IKKα Contributes to Canonical NF-κB Activation Downstream of Nod1-Mediated Peptidoglycan Recognition
نویسندگان
چکیده
BACKGROUND During pathogen infection, innate immunity is initiated via the recognition of microbial products by pattern recognition receptors and the subsequent activation of transcription factors that upregulate proinflammatory genes. By controlling the expression of cytokines, chemokines, anti-bacterial peptides and adhesion molecules, the transcription factor nuclear factor-kappa B (NF-κB) has a central function in this process. In a typical model of NF-κB activation, the recognition of pathogen associated molecules triggers the canonical NF-κB pathway that depends on the phosphorylation of Inhibitor of NF-κB (IκB) by the catalytic subunit IκB kinase β (IKKβ), its degradation and the nuclear translocation of NF-κB dimers. METHODOLOGY Here, we performed an RNA interference (RNAi) screen on Shigella flexneri-induced NF-κB activation to identify new factors involved in the regulation of NF-κB following infection of epithelial cells by invasive bacteria. By targeting a subset of the human signaling proteome, we found that the catalytic subunit IKKα is also required for complete NF-κB activation during infection. Depletion of IKKα by RNAi strongly reduces the nuclear translocation of NF-κB p65 during S. flexneri infection as well as the expression of the proinflammatory chemokine interleukin-8. Similar to IKKβ, IKKα contributes to the phosphorylation of IκBα on serines 32 and 36, and to its degradation. Experiments performed with the synthetic Nod1 ligand L-Ala-D-γ-Glu-meso-diaminopimelic acid confirmed that IKKα is involved in NF-κB activation triggered downstream of Nod1-mediated peptidoglycan recognition. CONCLUSIONS Taken together, these results demonstrate the unexpected role of IKKα in the canonical NF-κB pathway triggered by peptidoglycan recognition during bacterial infection. In addition, they suggest that IKKα may be an important drug target for the development of treatments that aim at limiting inflammation in bacterial infection.
منابع مشابه
Let-7g suppresses both canonical and non-canonical NF-κB pathways in macrophages leading to anti-atherosclerosis
Transformation of macrophages to foam cells contributes to atherosclerosis. Here, we report that let-7g reduces macrophage transformation and alleviates foam cell apoptosis by suppressing both canonical and non-canonical NF-κB pathways. In the canonical pathway, let-7g inhibits phosphorylation of IKKβ and IκB, down-regulates SREBF2 and miR-33a, and up-regulates ABCA1. In the non-canonical pathw...
متن کاملCytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1.
UNLABELLED STING (stimulator of interferon genes) is known to control the induction of innate immune genes in response to the recognition of cytosolic DNA species, including the genomes of viruses such as herpes simplex virus 1 (HSV-1). However, while STING is essential for protection of the host against numerous DNA pathogens, sustained STING activity can lead to lethal inflammatory disease. I...
متن کاملBacterial Peptidoglycan Stimulates Adipocyte Lipolysis via NOD1
Obesity is associated with inflammation that can drive metabolic defects such as hyperlipidemia and insulin resistance. Specific metabolites can contribute to inflammation, but nutrient intake and obesity are also associated with altered bacterial load in metabolic tissues (i.e. metabolic endotoxemia). These bacterial cues can contribute to obesity-induced inflammation. The specific bacterial c...
متن کاملThe tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis.
Both the canonical and noncanonical nuclear factor κB (NF-κB) pathways have been linked to tumorigenesis. However, it remains unknown whether and how the 2 signaling pathways cooperate during tumorigenesis. We report that inhibition of the noncanonical NF-κB pathway significantly delays tumorigenesis mediated by the viral oncoprotein Tax. One function of noncanonical NF-κB activation was to rep...
متن کاملInnate Recognition of Intracellular Bacterial Growth Is Driven by the TIFA-Dependent Cytosolic Surveillance Pathway.
Intestinal epithelial cells (IECs) act as sentinels for incoming pathogens. Cytosol-invasive bacteria, such as Shigella flexneri, trigger a robust pro-inflammatory nuclear factor κB (NF-κB) response from IECs that is believed to depend entirely on the peptidoglycan sensor NOD1. We found that, during Shigella infection, the TRAF-interacting forkhead-associated protein A (TIFA)-dependent cytosoli...
متن کامل